听书阁_书友最值得收藏的免费小说阅读网

第52章 我!陸時羨!寶刀未老-《重啟2007,從學(xué)霸到學(xué)閥》


    第(1/3)頁

    第一題是一道代數(shù)題,an是一道多項(xiàng)式之和,求證:當(dāng)正整數(shù)n≥2時,a(n+1)<an。

    剛看見這題的時候,陸時羨還有些沒有思路,于是一下子就頓在那里了。

    畢竟純粹的代數(shù)題,非常考驗(yàn)人的邏輯聯(lián)系思維能力。

    難道連第一道證明題都做不出來?這已經(jīng)是最簡單的了。

    陸時羨忽然緊張起來,如果連第一題都做不出來,絕對是對他后面題目解答的一個巨大打擊。

    他輕吐一口氣,慢慢迫使自己平靜下來。

    越是緊張?jiān)讲荒苤薄?

    陸時羨再次審題,忽然發(fā)現(xiàn)自己陷入了一個誤區(qū),證明這種比大小的題目,何必將其分別代入后再比呢?

    他只需要轉(zhuǎn)換一下思維方式。

    a與b比大小也可以轉(zhuǎn)換成a與b比差或者a與b比商。

    如果a-b最后的結(jié)果大于零,或者a/b的結(jié)果大于1,那就可以說明a大于b.

    想到這,陸時羨的眼睛越來越亮。

    他在草稿紙上飛快地驗(yàn)算,對于an式,可以利用乘法分配律將n+1單獨(dú)分離出來。

    再得出對任意的正整數(shù)n≥2,an-a(n+1)最后的簡化式。

    最后證明簡化式大于零。

    故a(n+1)<an。

    此題得證。

    將這道題解決,陸時羨長松一口氣,開始看下一題。

    第二題是一道平面解析幾何。

    題目大意是對勾函數(shù)和一條直線得到的兩個交點(diǎn),然后求交點(diǎn)在對勾函數(shù)上兩條切線的交點(diǎn)軌跡是多少?

    不得不說,如果邏輯思維能力不夠,光是看題目就足夠讓你看暈了。

    不過說起來,這種題還是陸時羨的強(qiáng)項(xiàng),他在數(shù)學(xué)里最擅長的就是將圖形轉(zhuǎn)化成代數(shù)。

    無非就是求交點(diǎn)的坐標(biāo)。

    根據(jù)給出的條件聯(lián)立方程組,由題意知,該方程在(0,+∞)上有兩個相異的實(shí)根x1、x2,故k≠1,且Δ(1)式=1+4(k?1)>0,兩個實(shí)根之和(2)式與之積(3)式都大于零。
    第(1/3)頁

主站蜘蛛池模板: 文化| 电白县| 响水县| 达拉特旗| 噶尔县| 蚌埠市| 绩溪县| 内江市| 左贡县| 兴业县| 汝城县| 福泉市| 若羌县| 达拉特旗| 旌德县| 靖宇县| 台北市| 乌审旗| 房产| 将乐县| 鲁甸县| 龙江县| 大名县| 永登县| 东明县| 繁昌县| 广安市| 太和县| 玉田县| 荔波县| 宜君县| 济源市| 太原市| 昂仁县| 安远县| 景泰县| 河间市| 泽普县| 邯郸市| 门头沟区| 安庆市|