听书阁_书友最值得收藏的免费小说阅读网

第二十四章 拓撲之路-《超維科技紀元》


    第(1/3)頁

    黃明哲的第一個方向,就是整合分析拓撲和代數拓撲。

    拓撲學的英文名是topology,直譯是地志學,也就是和研究地形、地貌相類似的有關學科。

    國內早期曾經翻譯成“形勢幾何學”、“連續幾何學”、“一對一的連續變換群下的幾何學”,

    但是,這幾種譯名都不大好理解,1956年統一的《數學名詞》把它確定為拓撲學,這是按音譯過來的。

    拓撲學是幾何學的一個分支,但是這種幾何學又和通常的平面幾何、立體幾何不同。

    通常的平面幾何或立體幾何研究的對象是點、線、面之間的位置關系以及它們的度量性質。

    拓撲學對于研究對象的長短、大小、面積、體積等度量性質和數量關系都無關。

    而拓撲學經常被描述成“橡皮泥的幾何”,就是說它研究物體在連續變形下不變的性質。

    比如,所有多邊形和圓周在拓撲意義下是一樣的,因為多邊形可以通過連續變形變成圓周。

    一個茶杯可以連續地變為一個實心環,在拓撲學家眼里,它們是同一個對象;而圓周和線段在拓撲意義下就不一樣,因為把圓周變成線段總會斷裂(不連續)。

    拓撲學發展到今天,在理論上已經十分明顯分成了兩個分支。

    一個分支是偏重于用分析的方法來研究的,叫做點集拓撲學,或者叫做分析拓撲學。

    另一個分支是偏重于用代數方法來研究的,叫做代數拓撲。

    這兩個分支到現在又有統一的趨勢,而這也是黃明哲的研究發向。

    而拓撲學在泛函分析、李群論、微分幾何、微分方程額其他許多數學分支中都有廣泛的應用。

    不過要統一分析拓撲和代數拓撲,顯然也不是一件容易的事情,一邊瀏覽大量的論文,一邊又在學校圖書館找拓撲學的相關書籍。

    他腦海之中的拓撲學知識體正在迅速的增長著,不過數學從來都不是一個獨立的系統,而是一個個數的組合,一條條公式的集合。

    不斷的激發靈感火花,將拓撲學知識體和代數幾何知識體、分析知識體等進行靈感火花碰撞,無數的新知識在他大腦之中爆發出來。

    拓撲學這座大廈,正在被黃明哲構建得更加龐大、更加堅固、更加有條不紊。

    ……

    課堂上,黃明哲一心兩用,一邊聽課一邊思考著問題,不時在草稿紙上面寫寫畫畫。
    第(1/3)頁

主站蜘蛛池模板: 疏附县| 永康市| 德阳市| 桐庐县| 章丘市| 苍梧县| 林周县| 汶川县| 南部县| 日喀则市| 乌恰县| 凌云县| 随州市| 宁明县| 蒙山县| 开封县| 瑞金市| 尼木县| 萨迦县| 萨迦县| 隆林| 大庆市| 固阳县| 东城区| 蓬溪县| 蓬溪县| 泰安市| 牙克石市| 山阴县| 宁夏| 台安县| 台安县| 沐川县| 巴林右旗| 墨竹工卡县| 都昌县| 康乐县| 宿松县| 东莞市| 舞钢市| 桑日县|