pg电子游戏软件,类似车行168的软件,单机游戏内购破解平台,今日打牌财神方位查询老黄历

小升初數學知識要點分析

時間:2022-07-01 02:29:26 小升初 我要投稿
  • 相關推薦

人教版小升初數學知識要點分析匯總

  第一部份 數與代數

人教版小升初數學知識要點分析匯總

  (一)數的認識

  整數【正數、0、負數】

  一、一個物體也沒有,用0表示。0和1、2、3……都是自然數。自然數是整數。

  二、最小的一位數是1,最小的自然數是0。

  三、零上4攝氏度記作+4℃;零下4攝氏度記作-4℃。“+4”讀作正四。“-4”讀作負四。 +4也可以寫成4。

  四、像 +4、19、+8844這樣的數都是正數。像-4、-11、-7、-155這樣的數都是負數。

  五、0既不是正數,也不是負數。正數都大于0,負數都小于0。

  六、通常情況下,比海平面高用正數表示,比海平面低用負數表示。

  七、通常情況下,盈利用正數表示,虧損用負數表示。

  八、通常情況下,上車人數用正數表示,下車人數用負數表示。

  九、通常情況下,收入用正數表示,支出用負數表示。

  十、通常情況下,上升用正數表示,下降用負數表示。

  小數【有限小數、無限小數】

  一、分母是10、100、1000……的分數都可以用小數表示。一位小數表示十分之幾,兩位小數表示百分之幾,三位小數表示千分之幾……

  二、整數和小數都是按照十進制計數法寫出的數,個、十、百……以及十分之一、百分之一……都是計數單位。每相鄰兩個計數單位間的進率都是10。

  三、每個計數單位所占的位置,叫做數位。數位是按照一定的順序排列的。

  四、小數的性質:小數的末尾添上“0”或去掉“0”,小數的大小不變。

  五、根據小數的性質,通常可以去掉小數末尾的“0”,把小數化簡。

  六、比較小數大小的一般方法:先比較整數部分的數,再依次比較小數部分十分位上的數,百分位上的數,千分位上的數,從左往右,如果哪個數位上的數大,這個小數就大。

  七、把一個數改寫成用“萬”或“億”作單位的數,在萬位或億位右邊點上小數點,再在數的后面添寫“萬”字或“億”字。

  八、求小數近似數的一般方法:1先要弄清保留幾位小數;2根據需要確定看哪一位上的數;3用“四舍五入”的方法求得結果。

  九、整數和小數的數位順序表:

  分數【真分數、假分數】

  一、把單位“1”平均分成若干份,表示這樣的一份或幾份的數叫做分數。表示其中一份的數,是這個分數的分數單位。

  二、兩個數相除,它們的商可以用分數表示。即:a÷b=b/a(b≠0)

  三、小數和分數的意義可以看出,小數實際上就是分母是10、100、1000…的分數。

  四、分數可以分為真分數和假分數。

  五、分子小于分母的分數叫做真分數。真分數小于1。

  六、分子大于或等于分母的分數叫做假分數。假分數大于或等于1。

  七、分子和分母只有公因數1的分數叫做最簡分數。

  八、分數的基本性質:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。

  九、小數的性質和分數的基本性質一致的,應用分數的基本性質,可以通分和約分。

  百分數【稅率、利息、折扣、成數】

  一、表示一個數是另一個數的百分之幾的數叫做百分數。百分數也叫百分率或百分比,百分數通常用“%”表示。

  二、分數與百分數比較:

  三、分數、小數、百分數的互化。

  (1)把分數化成小數,用分數的分子除以分母。

  (2)把小數化成分數,先改寫成分母是10、100、1000……的分數,再約分。

  (3)把小數化成百分數,先把小數點向右移動兩位,然后添上百分號。

  (4)把百分數化成小數,先去掉百分號,然后把小數點向左移動兩位。

  (5)把分數化成百分數,先把分數化成小數(除不盡時通常保留三位小數),再把小數化成百分數。

  (6)把百分數化成分數,先把百分數改寫成分數,能約分的要約成最簡分數。

  四、熟記常用三數的互化。

  五、

  1、出勤率表示出勤人數占總人數的百分之幾。

  2、合格率表示合格件數占總件數的百分之幾。

  3、成活率表示成活棵數占總棵數的百分之幾。

  六、求一個數比另一個數多百分之幾,就是求一個數比另一個數多的占另一個數的百分之幾。

  七、1、多的÷“1”=多百分之幾 2、少的÷“1”= 少百分之幾

  八、應得利息是稅前利息,實得利息是稅后利息。

  九、利息 = 本金 × 利率 × 時間

  十、應得利息 -利息稅 = 實得利息

  十一、幾折表示十分之幾,表示百分之幾十;幾幾折表示十分之幾點幾,表示百分之幾十幾。

  十二、

  1、原價×折扣=現價

  2、現價÷原價=折扣

  3、現價÷折扣=原價

  十三、幾成表示十分之幾表示百分之幾十;幾成幾表示十分之幾點幾,表示百分之幾十幾。

  因數與倍數【素數、合數、奇數、偶數】

  一、4 × 3 = 12,12是4的倍數,12也是3的倍數,4和3都是12的因數。

  二、一個數最小的倍數是它本身,沒有最大的倍數。一個數倍數的個數是無限的。

  三、一個數最小的因數是1,最大的因數是它本身。一個數因數的個數是有限的。

  四、5的倍數:個位上的數是5或0。

  2的倍數:個位上的數是2、4、6、8或0。2的倍數都是雙數。

  3的倍數:各位上數的和一定是3的倍數。

  五、是2的倍數的數叫做偶數。不是2的倍數的數叫做奇數。

  六、一個數,如果只有1和它本身兩個因數,這樣的數就叫做素數(或質數)。

  七、一個數,如果除了1和它本身還有別的因數,這樣的數就叫做合數。

  八、在1—20這些數中: (1既不是素數,也不是合數)

  奇數:1、3、5、7、9、11、13、15、17、19。

  偶數:2、4、6、8、10、12、14、16、18、20。

  素數:2、3、5、7、11、13、17、19。(共8個,和為77。)

  合數:4、6、8、9、10、12、14、15、16、18、20。(共11個,和為132。)

  九、最小的奇數是1,最小的偶數是0,最小的素數是2,最小的合數是4。

  十、如果兩個數是倍數關系,則大數是最小公倍數,小數是最大公因數。

  十一、如果兩個數只有公因數1,則最大公因數是1,最小公倍數是它們的乘積。

  (二)數的運算

  計算法則【整數、小數、分數】

  一、計算整數加、減法要把相同數位對齊,從低位算起。

  二、計算小數加、減法要把小數點對齊,從低位算起。

  三、小數乘法:1、先按整數乘法算出積是多少,看因數中一共有幾位小數,就從積的右邊起數出幾位,點上小數點。

  2、注意:在積里點小數點時,位數不夠的,要在前面用0補足。

  四、小數除法:

  1、商的小數點要和被除數的小數點對齊;

  2、有余數時,要在后面添0,繼續往下除;

  3、個位不夠商1時,要在商的整數部分寫0,點上小數點,再繼續除。

  4、把除數轉化成整數時,除數的小數點向右移動幾位,被除數的小數點也要向右移動幾位。

  5、當被除數的小數位數少于除數的小數位數時,要在被除數的末尾用0補足。

  五、一個小數乘10、100、1000……只要把這個小數的小數點向右移動一位、兩位、三位……

  六、一個小數除以10、100、1000……只要把這個小數的小數點向左移動一位、兩位、三位……

  七、分數加、減法:1同分母分數相加減,把分子相加減,分母不變。2異分母分數相加減,要先通分化成同分母分數,然后再相加減。

  八、分數大小的比較:1同分母分數相比較,分子大的大,分子小的小。2異分母的分數相比較,先通分然后再比較;若分子相同,分母大的反而小。

  九、分數乘分數,用分子相乘的積作分子,分母相乘的積作分母。

  十、甲數除以乙數(0除外),等于甲數乘乙數的倒數。

  四則運算關系

  兩個規律

  一、除法的商不變規律:被除數和除數同時乘或除以相同的數(0除外),商不變。

  二、乘法的積不變規律:如果一個因數乘幾,另一個因數則除以幾,那么它們的積不變。

  簡便計算

  一、運算定律:

  二、乘、除法的互化。(小技巧:符號是相反的;兩個數相乘得“1”。)

  三、求近似數的方法。

  ①四舍五入法。 ②進一法。 ③去尾法。

  四、積與因數、商與被除數的大小比較:

  數量關系

  三、式與方程

  用字母表示數

  一、在一個含有字母的式子里,數字和字母、字母和字母相乘時,中間的乘號可以記作“· ”,也可以省略不寫。在省略數字與字母之間的乘號時,要把數字寫在字母的前面。

  二、2a與a2意義不同:2a表示兩個a相加,a2表示兩個a相乘。即:2a=a+a,a2= a×a。

  三、用字母表示數:

  ①用字母表示任意數:如X=4 a=6

  ②用字母表示常見的數量關系:如s=vt

  ③用字母表示運算定律:如a+b=b+a

  ④用字母表示計算公式:S=ah

  方程與等式

  一、含有未知數的等式叫做方程。

  二、使方程左右兩邊相等的未知數的值,叫做方程的解。

  三、求方程的解的過程,叫做解方程。

  四、方程和等式的聯系與區別:

  五、等式的基本性質(一):等式兩邊同時加上(或減去)一個相同的數,所得結果仍然是等式。

  六、等式的基本性質(二): 等式兩邊同時乘(或除以)一個不等于零的數,所得結果仍然是等式。

  七、列方程解應用題的一般步驟:

  ①弄清題意,找出未知數并用X表示。

  ②找出應用題中數量間的相等關系,并列出方程。

  ③求出方程的解。

  ④檢驗或驗算,寫出答案。

  (四)正比例與反比例

  比和比例

  一、比和比例的聯系與區別:

  二、比同分數、除法的聯系與區別:

  三、求比值與化簡比的區別:

  四、化簡比:

  ①整數比的化簡方法是:用比的前項和后項同時除以它們的最大公約數。

  ②小數比的化簡方法是:先把小數比化成整數比,再按整數比化簡方法化簡。

  ③分數比的化簡方法是:用比的前項和后項同時乘以分母的最小公倍數。

  五、比例尺:我們把圖上距離和實際距離的比叫做這幅圖的比例尺。

  六、比例尺=圖上距離︰實際距離 比例尺 = 圖上距離 / 實際距離

  正比例、反比例

  一、正比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系就叫做正比例關系。

  二、反比例:兩種相關聯的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數的積一定,這兩種量就叫做成反比例的量,它們的關系就叫做反比例關系。

  三、正比例與反比例的區別:

  第二部份 空間與圖形

  (一)圖形的認識、測量

  量的計量

  一、長度單位是用來測量物體的長度的。常用的長度單位有:千米、米、分米、厘米、毫米。

  二、長度單位:

  三、面積單位是用來測量物體的表面或平面圖形的大小的。常用面積單位:平方千米、公頃、平方米、平方分米、平方厘米。

  四、測量和計算土地面積,通常用公頃作單位。邊長100米的正方形土地,面積是1公頃。

  五、測量和計算大面積的土地,通常用平方千米作單位。邊長1000米的正方形土地,面積是1平方千米。

  六、面積單位:(100)

  七、體積單位是用來測量物體所占空間的大小的。常用的體積單位有:立方米、立方分米(升)、立方厘米(毫升)。

  八、體積單位:(1000)

  九、常用的質量單位有:噸、千克、克。

  十、質量單位:

  十一、常用的時間單位有:

  世紀、年、季度、月、旬、日、時、分、秒。

  十二、時間單位:(60)

  十三、高級單位的名數改寫成低級單位的名數應該乘以進率;低級單位的名數改寫成高級單位的名數應該除以進率。

  十四、常用計量單位用字母表示:

  平面圖形【認識、周長、面積】

  一、用直尺把兩點連接起來,就得到一條線段;把線段的一端無限延長,可以得到一條射線;把線段的兩端無限延長,可以得到一條直線。線段、射線都是直線上的一部分。線段有兩個端點,長度是有限的;射線只有一個端點,直線沒有端點,射線和直線都是無限長的。

  二、從一點引出兩條射線,就組成了一個角。角的大小與兩邊叉開的大小有關,與邊的長短無關。角的大小的計量單位是(°)。

  三、角的分類:小于90度的角是銳角;等于90度的角是直角;大于90度小于180度的角是鈍角;等于180度的角是平角;等于360度的角是周角。

  四、相交成直角的兩條直線互相垂直;在同一平面不相交的兩條直線互相平行。

  五、三角形是由三條線段圍成的圖形。圍成三角形的每條線段叫做三角形的邊,每兩條線段的交點叫做三角形的頂點。

  六、三角形按角分,可以分為銳角三角形、直角三角形和鈍角三角形。

  按邊分,可以分為等邊三角形、等腰三角形和任意三角形。

  七、三角形的內角和等于180度。

  八、在一個三角形中,任意兩邊之和大于第三邊。

  九、在一個三角形中,最多只有一個直角或最多只有一個鈍角。

  十、四邊形是由四條邊圍成的圖形。常見的特殊四邊形有:平行四邊形、長方形、正方形、梯形。

  十一、圓是一種曲線圖形。圓上的任意一點到圓心的距離都相等,這個距離就是圓的半徑的長。通過圓心并且兩端都在圓的線段叫做圓的直徑。

  十二、有一些圖形,把它沿著一條直線對折,直線兩側的圖形能夠完全重合,這樣的圖形就是軸對稱圖形。這條直線叫做對稱軸。

  十三、圍成一個圖形的所有邊長的總和就是這個圖形的周長。

  十四、物體的表面或圍成的平面圖形的大小,叫做它們的面積。

  十五、平面圖形的面積計算公式推導:

  【1】平行四邊形面積公式的推導過程?

  ①把平行四邊形通過剪切、平移可以轉化成一個長方形。

  ②長方形的長等于平行四邊形的底,長方形的寬等于平行四邊形的高,長方形的面積等于平行四邊形的面積。

  ③因為:長方形面積=長×寬,所以:平行四邊形面積=底×高。即:S=ah。

  【2】三角形面積公式的推導過程?

  ①用兩個完全一樣的三角形可以拼成一個平行四邊形。

  ②平行四邊形的底等于三角形的底,平行四邊形的高等于三角形的高,三角形面積等于和它等底等高的平行四邊形面積的一半

  ③因為:平行四邊形面積=底×高,所以:三角形面積=底×高÷2。 即:S=ah÷2。

  【3】梯形面積公式的推導過程?

  ①用兩個完全一樣的梯形可以拼成一個平行四邊形。

  ②平行四邊形的底等于梯形的上底和下底的和,平行四邊形的高等于梯形的高,梯形面積等于平行四邊形面積的一半。

  ③因為:平行四邊形面積=底×高,所以:梯形面積=(上底+下底)×高÷2。即:S=(a+b)h÷2。

  【4】畫圖說明圓面積公式的推導過程

  ①把圓分成若干等份,剪開后,拼成了一個近似的長方形。

  ②長方形的長相當于圓周長的一半,寬相當于圓的半徑。

  ③因為:長方形面積=長×寬,所以:圓面積=πr×r=πr2。即:S=πr2。

  十六、平面圖形的周長和面積計算公式:

  十七、常用數據:

  立體圖形【認識、表面積、體積】

  一、長方體、正方體都有6個面,12條棱,8個頂點。正方體是特殊的長方體。

  二、圓柱的特征:一個側面、兩個底面、無數條高。

  三、圓錐的特征:一個側面、一個底面、一個頂點、一條高。

  四、表面積:立體圖形所有面的面積的和,叫做這個立體圖形的表面積。

  五、體積:物體所占空間的大小叫做物體的體積。容器所能容納其它物體的體積叫做容器的容積。

  六、圓柱和圓錐三種關系:

  ①等底等高: 體積1︰3

  ②等底等體積:高1︰3

  ③等高等體積:底面積1︰3

  七、等底等高的圓柱和圓錐:

  ①圓錐體積是圓柱的1/3,

  ②圓柱體積是圓錐的3倍,

  ③圓錐體積比圓柱少2/3,

  ④圓柱體積比圓錐多2倍。

  八、等底等高的圓柱和圓錐:錐1、差2、柱3、和4。

  九、立體圖形公式推導:

  【1】圓柱的側面展開后得到一個什么圖形?這個圖形的各部分與圓柱有何關系?(圓柱側面積公式的推導過程)

  ①圓柱的側面展開后一般得到一個長方形。

  ②長方形的長相當于圓柱的底面周長,長方形的寬相當于圓柱的高。

  ③因為:長方形面積=長×寬,所以:圓柱側面積=底面周長×高。

  ④圓柱的側面展開后還可能得到一個正方形。

  正方形的邊長=圓柱的底面周長=圓柱的高。

  【2】我們在學習圓柱體積的計算公式時,是把圓柱轉化成以前學過的一種立體圖形(近似的)進行推導的,請你說出這種立體圖形的名稱以及它與圓柱體有關部分之間的關系?

  ①把圓柱分成若干等份,切開后拼成了一個近似的長方體。

  ②長方體的底面積等于圓柱的底面積,長方體的高等于圓柱的高。

  ③因為:長方體體積=底面積×高,所以:圓柱體積=底面積×高。即:V=Sh。

  【3】請畫圖說明圓錐體積公式的推導過程?

  ①找來等底等高的空圓錐和空圓柱各一只。

  ②將圓錐裝滿沙子,倒入圓柱中,發現三次正好裝滿,將圓柱里的沙子倒入圓錐中,發現三次正好倒完。

  ③通過實驗發現:圓錐的體積等于和它等底等高的圓柱體積的三分之一;圓柱的體積等于和它等底等高的圓錐體積的三倍。即:V=1/3Sh。

  (二)圖形與變換

  一、變換圖形位置的方法有平移、旋轉等,在變換位置時,每個圖形的相應頂點、線段、曲線應同步平移,旋轉相同的角度。

  二、不改變圖形的形狀,只改變它的大小時,通常要使每個圖形的要素,如長方形的長與寬,三角形的底與高等同時按相同比例放大或縮小。

  三、對稱圖形是對稱軸兩邊的圖形經對折后能夠完全重合,而不是完全相同。

  (三)圖形與位置

  一、當我們處在實際生活及情景中,面對教短距離時,通常用上、下、前、后來描述具體位置。

  二、當我們面對地圖、方位圖時,通常用東、西、南、北,南偏東、北偏東……來描述方向。再結合所示比例尺計算出具體距離,把方向與距離結合起來確定位置。

【小升初數學知識要點分析】相關文章:

小升初數學知識定理公式分享10-13

關于分數的小升初數學知識點02-03

2022小升初數學知識點銜接10-26

鋼筋工程質量監理控制要點分析09-12

動脈血氣標本采集及血氣分析要點04-02

企業人力資源管理分析要點04-09

小升初選擇直升的優勢和劣勢分析09-12

連續梁橋懸臂澆筑法要點分析與施工流程大全08-28

排球的技術要點03-11

初學插花的要點09-28

主站蜘蛛池模板: 鹤峰县| 抚州市| 长治县| 开远市| 开鲁县| 马龙县| 忻城县| 徐汇区| 金阳县| 乌兰浩特市| 顺平县| 五华县| 洛扎县| 呼和浩特市| 金沙县| 文安县| 津市市| 石嘴山市| 道真| 中牟县| 房山区| 常山县| 定陶县| 延津县| 普定县| 金沙县| 遂宁市| 纳雍县| 蓬溪县| 宣恩县| 陇南市| 和平区| 怀柔区| 白水县| 灵川县| 马山县| 商河县| 江陵县| 鹤岗市| 故城县| 隆德县|